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ROBUST PREDICTION AND INTERPOLATION
FOR VECTOR STATIONARY PROCESSES

by

Haralampos Tsaknakis, Dimitri Kazakos, and P. Papantoni-Kazakos
University of Comnecticut, Storrs, Connecticut 06268
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University of Virginia, Charlottesville, Virginia 22901

P | Abstract

f Robust multivariate prediction and interpolation problems for statistically

. contaminated vector valued second order stationary processes are considered. The ;;;i;
’ ' 0N

statistical contamination is modeled by requiring that the spectra of the

processes lie within certain nonparametric classes. Both prediction and inter-

polation are then formalized as games whose saddle point solutions are sought.

.Finally, such solutions are found and analyzed, for two specific multivariate

-

spectral classes.
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1. Introduction

The prediction and interpolation problems for stationary processes have
received considerable attention for a number of years. The bulk of the work con-
centrates around scalar processes and the parametric model. The assumption there
is that the measure generating the stochastic process is well known. The initial
significant results on prediction and interpolation for the parametric model were
given by Wiener (1949) and Kolmogorov (1941).

Strictl} speaking, the term prediction refers to the extraction of a datum

from the process, when a number of past process data have been observed noiselessly.

The term interpolation refers to the same extraction, when past as well as future
noiseless process data are available. The two terms are extended sometimes to

include noisy observation data. Some results on those extended problems, and for '

~ T

the parametric model, can be found in the papers by Snyders (1973) and Viterbi
(1965). We point out here that the majority of studies on the extended problems

consider asymptotic and linear prediction and interpolation operations.
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The last few years considerable attention has been given to the robust extended
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prediction problem. Some attention has also been given to the robust nonextended

interpolation problem. The robust model is nonparametric, and the assumption is

e

that the measure that generates the stationary process is not well known. The

existing work on robust extended predictjon and interpolation concentrates around v f*ff

scalar stationary prdcesses, linear asymptotic prediction and interpolation

operations, and noisy observation data. Representative results here include robust

"~
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o

Wiener and Kalman filtering for scalar stationary processes (Masreliez et al (1977),

Kassam et al (1977), Martin et al (1976), Cimini et al (1980), Poor (1980)). Related ;;;;
work on time series outliers can be found in Martin et al (1977). Hosoya (1978) :;E;E
considers the rbbust nonextended prediction problem, for linear contaminated 2;35
scalar stationary processes. The robust solution is found there within the class %777
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of asymptotic linear prediction operations. A game theoretic formulation on the
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- measures of the stochastic processes is presented by Papantoni-Kazakos (1984), for

.
N
N
\
N
"
N
\

the robust extended prediction problem. Chen et al (1981, 1982) consider robust
multidimensional matched filtering, for classes with identical eigenvectors.
Regarding the robust nonextended interpolation problem, for scalar processes, the
interested reader may look into the works by Taniguchi (1981) and Kassam (1982).

The prediction problem for vector processes is considerably more involved than
that for scalar processes. The difficulty is mainly due to the cross correlations
among the component processes, which have a direct impact on the complexity of the
correlation matrix, and the spectral distribution matrix of the vector process.
Important questions regarding the structure of a vector process such as rank,
regularity, and non-determinacy are treated by Wiener et al (1957), (1958), Helson
et al (1958), Hannan (1970), and Zasuhin (1941).

In the present paper, we consider the robust nonextended prediction and inter-
polation problems for vector stationary processes. Vector processes have not been
treated in this case (some limited consideration for the interpolation problem can
be found 1n‘Taniguchi (1981)), and they present interesting peculiarities both
theoretical and practical. We will generally assume that the spectrum of the
vector process, which is represented by the spectral distribution matrix, belongs

to a class of spectra, and we will formulate the prediction and interpolation pro-

4
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blems as games with saddle point solutions. Then, we will find those solutions for

YT e

T

two specific spectral classes. One of the classes represents linear contamination sz%
N
NN
of a nominal spectral matrix. The other class includes the set of all spectral f:zgz
PR

matrices with fixed energy on prespecified frequency quantiles.

The organization of the paper is as follows. In section 2, we give a back- :33:
DX

ground on the multivariate prediction and interpolation problems. In section 3, ;:;{f
]

we define the spectral classes under consideration, and we formalize the prediction O
and interpolation games. In sections 4 and 5, we find the saddle point solutions biia
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for the prediction and interpolation games respectively. Finally, in section 6

we present some conclusions and a brief discussion.

2. Preliminaries

The original linear prediction problem,for an n-variable, discrete-time,
; second order stationary process, {Ek’ k € Z}, is equivalent to searching for a
matrix trigonometric polynomial gp(ejw) of the form

N
gp(ej“’) =1+ Z A eIl (¢))
i=] '

which makes the mean square error of prediction

Juyy o L T el T Juw
ep(F), 8,(e)) = g5 tr [ g, (1) Fw) gy () (2)

as small as possible. In (1), N runs over all the positive integers, Al’AZ «s. are

i any nxn complex matrices, and I is the nxn identity matrix. In (2), F(®) denotes

the spectral distribution matrix of the process, which defines a positive definite

-

Hermitian finite matrix-valued measure,on the Borel field of the measurable space
w T ’
1 %
[~m,7]), with e {; d Fw) = R, =E ﬁgk Xy }. The symbols *, T, and tr stand for
P conjugate, transpose, and trace, respectively.

Let Sp'be the convex set of polynomials of the form (l). We define the

space Lz(dF(w)) of all nxn matrix-valued functions A(w) on [-m,n], for which (3)

below is true.

m
tr f AW FW) A @) < » 3
~T

Then, Spc: Lz(d F(w)). Considering any two elements, AIOD) and AZGH), of

W T

L,(d F(w)) as equivalent, iff tr S ‘(Alﬁn)-Azﬁn))d F(w) (Alﬁn)-AZOn))* = 0,
-

then, Lz(d F(w)) is made into a Hilbert space (Hannan (1970)), with inner product

and norm defined respectively, as follows.

A NN N N T ST S
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(A (@, A @)y by = T {" A (w) a F(w) A"z" (w)
2 o
Ha Ny ey = 4@, A @)Y

Under the new notation, (2) can be rewritten as follows.
FW, g ) = en g o]’ %) i
plt s Bple gy d Plw)

Now, let §p (d F(w)) be the closure of Sp in'Lz(d F(w)); Since §p(d F(w)) is
I a closed and convex set in the Hilbert space Lz(d F(w)), it contains a unique
element of smallest norm (unique in the equivalence sense defined abo§e). It
follows that the infimum in (2) with respect to gp(ejw) is attained in §P(d Fw)). éi?

For reasons that will be explained below, we are going to consider a more

general prediction problem, by enlarging the set Sp, to contain all matrix tri-

gonometric polynomials g:(ej“5 of the form,

v
b
. .
’i
.

o, Jw, _ Jwi
gty = a + 35 A M (5)
N i=1
.' As before, N runs over all the positive integers, and Al’ A2 ..._aré any complex
ﬂ?: nxn matrices. Ab’ however, can now be any nxn complex matrix, whose determinant
ﬁ; is constrained to be equal to 1. Let s; be the set of all polynomials of the form
~oon
) (5). The convex hull S:c of S; will contain all polynomials of the form
z. N
- Bo + I Bi ejmi, with det (Bo)_z 1. This follows from the concavity of the func~
< i=] :
o tion det (+); namely, det (AA+(1-A)B) > (det(A))x(det(B))l-A; 0 <A <1 (Bellman
o (1970)). 1If we take the closure S;c(d F(w) of S:c in L2(d F(w)), we can define
E& the new prediction problem as follows. o2
Z::Z: °cdiyy o (2m~L o, Ju :
o min ep(F(w),gp(e )) = (27m) min ||gp(e )Ild Flw) E
g2 (e9)es%°(d F(w)) 82(ed)es% (a4 FW)) N
- P P P P :
b ' (6)
l..\ .
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J trlogf(w)dw is bounded from

*d
-
I

------------------------------

As a result of the derivation of the optimal predictor in Helson et al (1958),
the minimum in (6) assumes a closed form expression. In particular,
min L ep(F(w),g;(ejm)) =n exp[(21m)-1 JF trlogf (w)dw] )
g;(ej“’)es;c(d F(w)) -

where f(w)dw is the absolutely continuous parﬁ of the measure d F(w), with respect
to the Lebesque measure in [-m,T], and where f(w) is the spectral density matrix
of the process, which is Hermitian, nonnegative definite a.e. (dw), and integrable
in [-7,7]. If the scalar function trfogf(w) in (7) is not integrable (since

L

-~Tr T ]

LRI A e A B R A A A R AR AR SR A A S S A e veh e AR i M S e sy Sy ante )

above,as can be verified by using Jensen's inequality,

this can only happgp if r trlog f(w)dw = -»), the right hand side of (7) is inter-

-"‘r '
preted as zero. An element g; (w) in S;c(dF(m)), that attains the minimum in (6)

is such that,

o' o! *L -1 i
gp (w)(gp (w))" = exp[(2m) = s trlogf(w)dw I-Logf(w)] (8)
. -7

v
for points we[-w,7],such that f(w) exists (i.e. a.e. (dw)), and g; (w) = 0 for an
at most countable subset of [-w,7]. The latter is simply a manifestation of the
fact that the singular part of d F(w) contributes nothing to the minimum in (7),

L
and it corresponds to a purely deterministic process. If g: (w) exists, it is

1)
then proven by Helson et al (1958) that g; (w)e S: (d F(w)); i.e. the determinant

of its leading Fourier coefficient 1s equal to 1, or equivalently the minimum in

(6) for g;(m)e S; (d F(w)) exists, although S: (d F(w)) is not convex, and it is

]
attained at g: (w).

Consideration of the prediction problem in S:c (d F(w)), or equivalently in

S: (d F(w)), has the remarkable advantage of a simple closed form expression for

the minimum error given by (7), which is a direct generalization of Szego's, formula

(Grenander et al (1958)), for scalar processes.
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The linear'interpolation problem for an n-variable discrete-time second order
stationary process'{gk, k € 2} is less difficult, because the constraint set of the
associated ninimization problem is larger than E;'(d F(w)), since no causality
requirement exists. - We will denote by Si the convex set éf all trigonometric poly-
nomials of the form,

N
Juy _ Jwi
g () =1+ Y A e (9)
i=-N '
i#0
where N runs over all positive integers, and {Ai’ i # 0} run over all complex nxn
matrices. The errof that has to be minimized is similar to that inm (2), and it

is rewritten here for completeness.

: _ n T - 2
e, (Fw),g, (=020 e s g, (@4 F@g} (I=mH1g, &IV ey QO

. Taking the closure §;' (d F(w)) of §; 1n L2(d F(w)), we can define the 1ntérpolation

problem as follows.

el I

: Jw -1 jwyy 12 S
: min__ e, (F(w),g, (e ))=(2m) min__ | g, (3N ]| L,

As derived in Hannan (1970), the minimum in (11) is given by

T -1 ’
min ei(F(w),gi(w)) =21 tr [( S f l(m)duo ] (12)
g, (WeS (d Fw) T

and it is attained for some gi(w)e EI (d F(w)), such that
: T -1 -l -1
gi(w) =21 (ff “(wdw) £ “(w) ; a.e. (dw) (13)
-m
gi(w) = 0 for an at most countable subset of [-m,T], where the singularities of the

spectrum are located. In (13), f'l(w) is the Penrose-Moore generalized inverse of

f(w) and it is integrable for full rank processes. e

b
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3 3. The Robust Formalization

3 We now look at the above problems from a different point of view. We assume

that the spectral structure of the process is only vaguely or. incompletely specified.

This corresponds to a more realistic situation, since the procedures for obtaining

v, Y T
P
D

the spectrum of a process always involve errors. This applies even more to vector

processes, where the increased complexity results in larger errors. With the above

in mind, it is clear that new formélizations of the problems considered in section ' ﬁiii
2 are needed. Such a formalization is given below, where the spectral distribution
: matrix of the process is assumed to be a member of a whole class of spectral distri-
i bution‘matrices. For the purpose of this work we are going to consider two

F different types of épectral classes, denoted by FL and fb, which are defined as :;ﬁi
F follows: Efif
|

(@) F = (F@/FW) = (1-©)F_(w) + € H(w), we[-7,7],& fixed and such that, i

S 0<e<l1. - L
. : Lo
P Fo(w): well defined fixed nominal spectral distribution matrix :
H(w): arbitrary spectral distribution matrix satisfying
. m w .
en ™ tr £ @ = @07 tr £ AF @ =W >0, W fixed} e
- -7 b
®) Fy= (FY@M ™ trS d F@) = ¢, > 0, 1=1,...k, ¢,,...c, Fixed o
D, ‘ﬂ
D;,...D, fixed Lebesque measurable subsets of [-7,7] with positive H; 1
. : -
measure each and e
k :t'-",:.
p,AD, =@;%¥i#3, U, = [-7,1]} et
13 =1 1 : ' T

FL is called the e-contaminated class, or the gross error model, and it corresponds
to the situation where the nominal process Fo(w) occurs only with probability

l-e¢ < 1, while with probability €, any other process, with the specified energy

congtraints, may occur. F, is called the p-point class, ard it contains all the

Q
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' spectra, whose energy is specified by a positive number, on a finite collection of
mutually exclusive and exhaustive measurable subsets. of [-w,w], with positive
Lebesque measure.

In pursuing a robust formalization, for prediction and interpolation, it will
be necessary to restrict the classes gg (d F(w)), EI (d F(w)) defined in section 2,
for the simple - reason that instead of a single F(w), a ﬁhole class of spectral
matrices.is considered. In particular, we will consider the following classes of

predictors and interpolators.

s. = N -s-g(dr(w)) s, = N S, (4 F(u)

Pl pweF, L pwer, 1
— (14)
Spq = N s° (d F(w)) Si0 ™ N EI (d F(w))
F(w)eF, P ? peF
Q Q
We are now in a position to formalize the following games:
. Find pairs (F;(w),g;T(m))eErxSRT(T = L,Q. R = p,i) such that
: e (Fr (@), g () < ep (FL(w),gpn(0)) < ep (F1(w),gpn(w))
' ¥ FT(m)eF s ¥ gRT(m)t—: Ser (15)

If the pairs with the superscript e exist, we call them robust, and they are the
saddle point solutions of the games.
In section 2, we saw that the minimum error expressions (7) and (12) depend

only on the absolutely continuous part of the spectral distribution matrix F(w);

namely, the spectral density f(w). The spectral singularities contribute nothing {;53?
to the minimum. However, under the present formalization it is not, in general, EZS?
true that the operators g;T(m) will belong to the corresponding intersection ‘2
classes‘SRT (T=L, Q R=p, 1), if we allow spectra with singularities, in our fi*ﬁ
A classes F , Fb. As ve will see in sections 4 and 5, this is due to the fact that ;:;1
E the operators g;T(w) are defined a.e. (dw)lin [-7,7], and they do not necessarily ;;fé

. e eenear e v e e - - e A p e e e e e e ce e TR
..’..'..,..5,-.’-_ AR '.‘....- N .. AR R A SIS N PRI O RN Lo Tt W e e oy



have to be limit points of the corresponding sefs of trigonometric polynomials,
with respect to norms L2(d F(w)), for all the F(w)'s in either FL or Fb, that :
contain singularities. For this reason; and throughout the rest of the paper, we ==
will restrict attention to processes with absolutely continuous spectra. In
particular, we will assume that the nominal spectral distribution ma&rix Fo(w), in
the definition of the class F_, is absolutely continuous with density fo(m), and

" that H(w) runs over the absolutely continuous spectra with density denoted by h(w).
Similarly, the class F, will consist of all F(w) that, in addition to the constraints

Q _
imposed in definition (b), will be absolutely continuous as well. Under those

assumptions, the two classes Fi and FQ reduce to classes of spectral'density matrices. e

For notational simplicity, we will frequently omit arguments of functions. In sec-

i tion 4, below, we solve the .predlction games on FLxSpL and FstpQ‘ In section 5, -
- we solve the interpolation games on fosiL and FQXSiQ' In all cases, we state the

solutions, and we prove them directly by construction,

4. The Solution of the Prediction Games on F xS _ and F xS
L—pL—Q—Q

Let {Aikw), gg(m); i=1,...n} be the ordered eigenvalues of fo(w) (A:(w)z}

o

141 @

EAATS \ D
0 l'l
ol

i=1,...n-1,¥we[~m,m]), and the corresponding normalized eigenvectors. Since

. T T n f"‘"‘
h (211)'1 tr S (1—e)fo(w)dw = (2m) 1 S I (1—€)>\:(w)dm = (1-e)W<W, there exists a -
- -7 -7 i=1 : :
- positive number ¢ such that, 2
2 ) S
‘ g 0 . v
, -1 -
@D ;) max((-)A3 (W), c)dw = W (16) -
-Tr 4 R
i=1
Let us define the set of functions, ' iﬂﬁ
e o . -
Ai(w) = max((l—e)ki(m), c), i=1,...n . a7 S
and the matrix ;?i
n T -
e e o (o] * - =
CESW = )0 AW 2 G @) (18) i3
{=1 f..‘.
'.‘.
v
N,
-
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f:(a)) is Hermitian and positive definite, for all we[-mw,7}, since its smallest eigen-

value is uniformly larger than ¢ > 0. Furthermore, f:(w)eFL, since f:(w)—(l-e)fo(w)= !

-y

n
T
=L %W - -e)2%W)) x°(w) G N® s nonnegative definite for all w, and (16)
o 1197 X, (0 (xy
holds. We also note that ~=<nfog c = tr Log(c.I) < tr Log f:(w) and

i

i

-1 [ e -1 [t e W el
(2m) ~ S tr Log fL(w)dw < Log((2m) ~ S tr fL(w)dw) = Log 5 < ® from which we J
-0 -Tr ;’_;J

conclude that tr Log fi(w) is integrable. Therefore, tr fLog (-f:(w))-l is also integrable.

- )
A aat v

'Finally, since 0 < (f:(w))_l < 1 I, (fle‘(m))_'l is also integrable. Let

eL

T . .
K 4 ex;:o[(Zﬂn)“1 S tr fog f:(m)dm]. We consider the matrix KeL(f:(m))-l, which
—1‘ -
is easily recognized to be equal to the right~hand side of equation (8), in section ' ’

2, for f: = f, and which satisfies the requirements of Theorem 7.13 in Wiener et al

A

A

(1957, 1958). From that we conclude that there exists a factorization of

Lot SUEREE
A
A

e -1 s
KeL(fL(m)) of thg following form.
g% () (g% N* =k (£2W)H ™ 5 ace.(dw) (19) I
pL pL el 'L > o ' RO
where, if {Az, n € Z} are the Fourier coefficients of g:L(w), then A: = 0 for v“", y
n < 0, and det A: = 1, According to the derivations in Helson et al (1958), g:L(w)

s 5

is the element of S; (f:(w)dm) that minimizes ep(f:(m), gpL(m)), with respect to

o ,.e 4
gpL(w) € Sp (fL(w)dm). That is, : -

e (E1 (), & (W) < e (F7@), g (W) ]

- . (20 =

. iy

3 ¥ gpL(m) € Sp (fL(w)dm). oo

S

In Lemma 1 below, we prove that g;L(m) € SpL' Theorem 1 establishes that the pair ;:Z:::i:
e e N
(fL(w)’ gPL(w)) is the solution of the prediction game on FLxSpL. o
e ]

Lemma 1 gpL(w) € SpL t;
Proof ' .:::'\‘:i
N

From (19) and (f:(w))-l < c'.'l 1, we conclude that each entry of g:L(w) is essentially ]
bounded (dw). From its Fourier coefficients Ag, Ai...., we form the sequence j
1

O

S A o e T P I N P R S A Ot
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{Gg(ejw)} of the Fejér-Cesaro partial sums,

N
1 :
: e, ju, 1 e, jw
* | y(e™) = 7 Do sp(e?™ (21)
. k=0
where N
e, jw, _ e juwi e, jw o
SN(e ) = Z A:l e . Evidently, GN(e ) € Sp'
i=0

By the usual theory of this sum, each entry of G;(ejw) converges a.e. (dw) to the

corresponding entry of g% (w) boundedly, since ge (w) is bounded. Put .
pL pL : .

hN(w) = G;(ejw) - g:L(w). 'Th(‘m, for any f(uu)t-:FL we have:

w T
”h.N(w)H:(m)dm =/ trh @ £ Y ds <
-1

w
S A T @h W) tr £(W)do.
-n

whers Amax('.) denotes maximum eigenvalue. Since h.N(w) + 0 a.e.(dw) boundedly, it :_1
RO,
is implied that A (h§T(w) h (w)) + 0 a.e. (dw) boundedly. Now, since tr f(w) S
max N R
contains no singularities, due to the assumed absolute continuity of the members of )
*T .
FL’ it is concluded that Amax(hN (w) hN(w)) + 0 a.e. (tr f(w)dw). Application of :

the dominated convergence theorem on A h;T (w) hN(w)) yields:

max(

m
LHm , 2 ( *T(w) h (W) tr £(w)dw =
Moo = Max hN N :: :
n . o
= f Lim Aax By (W he(w) tr £(w) dw = 0, which implies S
-7 N ]
[Ty @ gy > © i
The preceding arguments show that there always exists a sequence of elements L -

of S;, which tends to g:L(m), under any norm ||-|| , f(w) € FL' Thus

£ (w) dw

........




.............

Remark. The basic constituents for the proof of lemma 1 are: 1) The fact that the ’;_,
eigenvalues of f:(w) are bounded away from zero, which implies the a.e. (dw) bounded-

ness of g:L(wD. 2) The absolute continuity of the members of the class F, , which

permits the transition from the a.e. (dw) to the a.e. (tr f(w) dw) convergence. The ks
~above requirements are satisfied for all the other games we consider in the sequel. 5?13
i Theorem 1 ;f -
: | I
X The pair (f:(m), g:L(aD) is a saddle point solution of the prediction game on -
[ -
- FixSpL.
. Proof : o

We have to prove:

ep(fL, g:L) < ep(fi, g:L) < ep(f:, gpL) svE eF o3 ¥ 8,1 € Sp1 (22)

The right-hand side inequality in (22) follows from (20) and S; (f: de)SpL. Also

w
ep(f:, g:L) = n exp[ (2m)~1 f fog £2(wdu] = n Ky (23)

and

e -1' n e e *T
ep(fL’ gpL) = (2m) {; tr[gpL(gpL) fL]dw .(24)

Combining (24) with (19), we get,
e -1 T e,-1
ep(fL, gpL) = (2m) KeL {; tr[fL(fL) Jdw = ::
n i .
-1 " e -1 , 0 *T o e
G D QL) g™ £ W X wdw (25) e
L 11 e

T
Put ui(w) = (gz(w))* fL(w) E:(w)° Since fL(w) e F, fL(w) - (1-¢) fo(m) should be

nonnegative definite which implies that
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| »
u, W > (1-€) AW ; ¥, t=1,...n (26) -
Also :
b n ;.‘_.ﬂ.'
ed™h g ot g e = en™ 2“1(“’)‘1“’ =W 27 Lo
- =1 - o
From (25) and (23) we obtain, ;. .-
(£, 65)) - e (5 85) = K, ((2 ) j Z A ) -
e , 8 - e > 8 = Y} W -n}] =
L pL )« (m)
KoL cm s W-g-oNw ERACLY o
LR ’ ———dw | < o
M oNjze (e[ W) (-eNj(w<e € I L
n . o]
u, (w)-(1-e) A, (w) u, (w)-c e
<_TL'Z : e ws S S - 2
S a- e)x (w)>c ¢ 1enjwee € K
KD 7, (w-A](w) m =
2‘;1‘ ‘ -—:-"—E—-i—-—— dw = -Z%LE S tr(fL(w)-f:(w))dw =0
g=1 " | o

and the left-hand side inequality in (22) follows.

We now proceed to the solution of the prediction game on FstpQ' We define Ef:.:'
the spectral density matrix -—

g -(— Zc Iy @ = Yo )) (28)

i=1

where 1 (l.u) is the indicator function of the set D, and m(-) is the Lebesque
measure 1n [-%,m}. It can be seen by inspection that fQ(w) € FQ Since ey >0,
m(Di) > 0, the eigenvalue of £;(w) is bounded away from zero and from infinity, by
. ::\.
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m
%—- min {;61-)—} , ;211 max {—
i=l,...k i=1,...k

and tr Log (fg(w))-"' both exist and are integrable. We thus conclude that there

e -1
= )} respect:lve.l.y. ]Ft follows that (fQ(w))

exists some ge W) € s (fe(m)dw), such that

pQ p ‘fq Y
e , e *T :
gpQ(gpQ) (fQ) a.e. dw (29) R
' -1 e v
where keQ = exp[(2mn) :,1-' tr Log fQ dw). L

MM e
PR Y ST

where the Fourier coefficients of g:Q’ {A:,

det Az = 1. Exploiting the assumption of the absolute continuity of all the

i € 2}, vanish for i < 0, and where

v
(]
1}

. members of FQ’ we can argue exactly, as in Lemma 1, and establish that
X S:Q € spQ = f\ S;(f dw). Also, g:Q is the elemenf: of S; (f; dw) which minimizes r 4:
: feF 1
Q ,_-_.._4
- ep(fg, gpQ). We conclude this section with the following theorem. S
Theorem 2
The pair (f;, geQ) given by (28), (29) is a saddle point solution of the e
. o
prediction game on F xS__. o y NN
‘ QrQ ‘ : ' N
R
e
Proof. We have to prove that, e (f < e (£2 < £ : R
Proof av prove ,p(Q,gpQ)_p( ,g) e(Q.gQ)
;s ¥ fQ € FQ; ¥ gpQ € spQ' The right-hand side inequality follows from the fact '.-;-1:21
that § 0 C S (f; dw), and that g;Q is the minimizing element of ep(fg, g,q) for ’
gpQ € Sg (fg dw). We thus have:
.. 1 ™ S
e (f,- = =~ tr £ ( ) dw = <l
o BpQ) " 2m ;’,; ®pQ “q gpQ B
k (D, ) s
J ey-1 - 2Q i - ——
f erffo(f) "1 du = o 7 e, 1{ tr £, du e
i=] i .
e e L
=nk  =-e (f SN
eq ~ %p{fq Ep¢) R
il
A

FAIAI I ITAF IR




5. The Solution of the Interpolation Games on F;ggiL and F xS'Q

We start with a proposition:

Proposition 1

If p(w) is any nonnegative integrable function in [-w,7m], then the function

w
T(Y) =y  [max(y, p@))] ™ dw
-7

defined for 0 < y < ess sup p(w) is monotonic and continuous.

w
Proof ’ : b
For 0 < Y, < A\ < ess sup p{w) we have:
W
Y Y i
TO-TCr,) = S aw+ - L aw- S Sy - R
;2P (W) Y <p(w) Y2P(w)  v,<p(w) ‘;_L;-;-?
Y Y ‘ Y RN
= S aw S -—ta-s-dw— S —Fi-)-dm- S —-(%)-dm- ]
A Y,-Y, p(w)-Y, L
‘ = ‘, p—(;)—‘dm + S p(w) dw > 0. -
Y, <p(w) Y 2P (w)>Y, o
Yl-Yz RN
Also, T(Y,)-T(y,) < S dw, from which the continuity follows. L
— Y X B
2 p(wy>y, e
]
.:_1
v
Now, as in section &, let {A:(w), x:(w), i=1,...n} be the ordered eigenvalues ]

and the corresponding eigenvectors of the nominal spectral density matrix fo(w).

For each eigenvalue we define the function,

m b

T,(0 =¥ f [max(y, @-eAJ@)I ! dw, 1=1,...n (29) e

- _u.\:.-:':;i

Due to the monotonicity and continuity of Ti(Y)' for any positive number jgfzj

¢ < 27, there exists a unique Yq such that Ti(Yi) =c, i=1,...n. We put




Yi(c) = T;l(c). The inverse mapping T;l(c) is also monotonic and continuous. Now,

T a '
since (211’)-'1 J I (l-e)lz(w)dw = (l-€) W < W, there exists a positive number
-7 i=l
c*,such that,
n
-1 “ ‘ -1, % o
(m™ p Z max (1] (c¥), (L-©)A]()) du = W (30)

T og=l

Before we proceed further, we will make an assumption, concerning the eigen-
vectors of fo(m), {x;(w), i=1,...n}. For the purpose oonbtaining closed form
solutions, we will ;;;ume that {5:(&)} are constant, independent of w, for every
i=1,...n. We denote them by 5: omitting their argument. Thus, we consider the
class EL of spectral densitylmatrices,such that the nominal fo(w) has constant eigen-
ve;tors. We note that this is different from requifing that all members of FL have
constant eigenvectors.

We define:

: AS@) = max(T] (c*), (1-eAJW)) (31)
n

£ = W 2eH (32)
i=]1

The eigenvalues of f:(m) in (32) are bounded away from zero, since they are all
uniformly larger than or equal to T;l(c*) > 0. Also, f:(w) e F, due to (32), and

to the fact that fe(w) > (1-€) fo(w); ¥ wel-m,7]. We define

e T e -1 -1 e -1
giL(w) = 27 4; (fL(w)) dw (fL(w)) (33)

w
which minimizes Ilgi(w)llfedm’ 84 (w) e'§I (f:dw). Since (Zw)“1 I g:L(w)dw = I, the
L -

Fejér-Cesaro partial sums of the Fourier series of g:(m) are trigonometric poly-
nomials belonging to Si. Furthermore, since the entries of g:L(w) are bounded by

(33), the sequence of the Fejér-Cesaro sums will converge dominatedly a.e. (dw) to
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g:L(m). The absolute continuity of the members of the class FL’ together with the
application of the dominated convergence theorem then implies, in a way similar to
that in Lemma 1, that the above sequence will converge t;o g:L(w), in the norm

”.”f(w)dw’ for any f(w) € FL' Thus g:L(w) €8, = /\ ?{ (f(w)dw). We now
f(m)eFL

state the solution of the game on FLxS 4L°

Theorem 3

The pair (f:(w), g:'L(w)) defined by (31), (32), (33) is a saddle point solution

of the interpolation game on FLxS iL°

Proof

We restate the theorem, as follows.

e; (£, (@), 83 @) < e (7w, 83 @) < e, (EFW), gy (w))

b ‘ .
: : ¥ fL(w) € FL’ ¥ giL(w) € Su

The second inequality follows immediately from section 2, and the fact that
_— e
siLCsi (fL(m) dw) .

T _ -1
Put k;L = ( S (f:(w)) . dw) . The following relationships are valid:
-7
e e e -1 " e e e «T B
e (., 8 () - e (T W, g5 @) = N S er gy () (£ @-£7 W) (g7 @) dw =77

ﬂ -1
=2m g erlkl (7))~ (£ (W-£5 () 1dw =
-7

&7

o T x¥ £ (W) x,-A%(w)
-am Y — 1 ” s =L ‘%1 duw (34)
i=1 [, (A:(w))-ldw] - (A (w))
-
*T *T

Since £, (w) € FL > £, (W) > (1-¢) £, W + x; £, W _:31 2 (1-e) x; £ (W) x, =

- ¥ -] T T
= (1-e)2%w), and ML £ tr £ (Wdw = (2m)7~L P fw) x, dw = W.
1 ~_f" L ;/1; o X Xy

.......
. - .,

LR
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g:L(m). The absolute continuity of the members of the class FL’ together with the
application of the dominated convergence theorem then implies, in a way similar to
that in Lemma 1, that the above sequence will converge éo g:L(w), in the norm

e ———
for any f(w) € FL' Thus giL(w) € siL = /\ Si (f(w)dw). We now

g pawr A
state the solution of the game on FLxS iL
Theorem 3

The pair (£ (w), g5y (w)) defined by (31), (32), (33) is a saddle point solution
of the interpolation game on FLxS iL

Proof

We restate the theorem, as follows.

e, (£, W), 83 W) < e (F7(w), g (W) < e (W), gy (W)

;VfL(w) e F, Vgﬂ‘(m) €S,

The second inequality follows immediately from section 2, and the fact that
Cs (f (w) dw)

Put k = ( f (f W) dm) . The following relationships are valid:

- " T e
e, (£, (), 85 () - e (E5(0), g5, ) = @M £ tr 8§ () (£, )-£5@w)) (g5, ()™ dw =17
- PR

n -1
=2 otelkl (L) (£ () -£7 () ]dw =
-n

n *T

T oxt O£ (W) x,-A(w)
1 =~ L 4 i
= 27 Z S dw (34)
" o 05en?

- 2
=1 [/ (5@ law]
-

T : T
Since fL(m) € FL -+ fL(w) > (1-€) fo(w) +> _:5: fL(w) X2 (1-¢) 5: fo(w) X"

-1 7 - T
- - W, ad N7 f o @de= G F R e x, dw =
-m ~n i=1
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T
Put v, = x} f () x; > (1-€)AJ )3 ¥ we[-m,7], i=1,...n. Then, from (34)

we get:

ey (£, W), g, (W) - e, (£ W), g5 W) =

n -1‘ *
v, (W)-T, (c")
= 27 }E: T L 1 .2 -1 *)>(1 29 ) L Tl 1* 2 dw +
=1 QW) dw] Ty (e A W (T 7(e))
-1 .
v (w)-(l—e)k"(w).
+ 1 i dwl<
-1, x ; (o] ] 2 -~
T, (c )f_(l—e)ki(w) ((l-s)li(w))
n v. -1t
R Dl S dw +

=1, #.\2
(T, (c™))
LP> t S by *)>f<1- MW (T 1(c*)?
=1 c g C €)A; (w 1 (c™))

v, @-(1-e)° (@)
i i dw |=

+ S
T MM <-nfw (1)’

n

~ w

B (2*1;2 Z S ‘Vi(w)-lf(w)) dw = 0.
¢ i=1 "

The proof is now complete.

Finally, wve examine the interpolation game on Fbxsiq. The result here is

summarized in a theorem.

Theorem 4
The pair (f;(w), g:Q(m)) which is defined by the expressions,

K
£ -% LZ 2 ¢, 1D£(w) a1 - A;(w)'l
-1

8y(W) = 21 (} (2 w) ™! dw))“1 (£ wn?
Q AT Q

"""" A'-.'u DRI ) v “
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is a saddle point solution of the interpolation game on FbxsiQ'

Proof

Since f:(w)"is bounded away from zero and from infinity, due to ce >0,

m(Dl) >0, £ =1,...k, and since we are considering absolutely continuous spectra

only, it will follow again that giQ(w) €S The inequality,

iQ’
e

ei(fQ(m), giq(w))_ﬁ ei(fg(w); giqom)); ' giQ(w) € S,., follows again from

iQ
section 2 and siQC-s—i (f;(w) dw). We also have:

L}
ey (Fq@), go@) = @M tr £ 50w £o(w) ghyw) du =

-7
k
T e -1 -2 e -2
- 21r(f 08 (w)) dw) Z S O%)  tr £ (w) dw =
z Q Q Q
i =1 D¢

2 2
T _ -2 am (D,)
~ 211(_/‘ aSwn™ dw) Y % St -
@ an’e,? b @
. £=1 t Pz

k 22
. L _ -2 n'm (D))
= 21r(f (l;(m)) 1 dw) Z — .
- £=1 2 e

w : -1
=21m( 0Cw)! dw) - e(f2(W), 8% ()
L Q" Biq

Finally, the result follows from the last string of relationships.

6. Conclusions, Discussion

In this paper, we considered the prediction and interpolation problems for
vector processes with ill-specified statistical structures. We modeled the uncer-
tainty in the statistical description of the processes, by assuming that their
spectral dehsity matrices lie within certain classes of such matrices. Then, we

formalized the problems as games, whose saddle point solutions were found for two
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specific classes of multivariate spectral classes. The first such class (Fi)

represents a linear contamination of a nominal spectral density, and it includes an

energy constraint. The second class (F ) is represented by fixed energy on a

Q
finite number of prespecified frequency quantiles.

Both the Fi and the Fb classes were assumed to consist of absolutely continuous

spectra only. If these classes are allowed to include singular spectra as well,

the saddle point solutions found, cannot be guaranteed to belong to the appropriate

spectral classes. There is an exception for the class Fi, where we can allow the

nominal spectrum Fo(m) (but not H(w)) to have singularities at a certain set of
points. Then, each member of Fi has singularities at exactly the same points as
Fo(w). The results that we obtained can be readily extended to include this case. ;;i;l
However, when H(@) is allowed to have singularities, then a solution does not in
general exist. For the latter case and for scalar stationary process an approximate fi%ﬁ
solution is given by Hosoya (1978).

All the derived solutions for the prediction and interpolation games correspond
to the eigenvalues with the "flattest” possible tails, or equivalently to measures
with the most evenly spread energy. For the F_ class we obtained identical spectral

Q
density matrices for both the prediction and the interpolation solutions, which are

diagonal, with a single eigenvalue that is piéce—wise constant.

The solutions that we obtained for the F, class are not unique, and we just

Q

selected the simplest possible. The solutions for the Fi class are also nonunique,

in general. All such solutions attain, however, the same saddle value of the game.
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